THE NEURAL BASIS OF COLOR CONSTANCY Since type 1 cells in the lateral geniculate body seem not to be geared to make color- spatial comparisons, we probably have to look beyond the retina and geniculate. To test the idea that such computations might go on in the cortex, Land's group and Margaret Livingstone and I examined a man who had had his corpus callosum severed surgically to treat epilepsy. Spatial-color interactions did not take place across the visual-field midline, that is, the color of a spot just to the left of the point at which the subject was looking was not affected by drastic changes in the colors in the right visual field, whereas normal subjects observed marked differences with such changes. This suggests that the retina by itself cannot mediate the color- spatial interactions. Although no one had seriously claimed that it could, the question continued to be debated, and it was satisfying to have some experimental evidence. The experimental results are consistent with our failure to find retinal ganglion cells that could plausibly be involved in color-spatial interactions. The goldfish, which makes spatial comparisons very much like ours, has virtually no cerebral cortex. Perhaps the fish, unlike us, does make such computations with its retina. Nigel Daws' discovery in 1968 of double opponent cells in the fish retina seems to bear this out. In the monkey, as I describe in the next section, we find such cells in the cortex but not in the lateral geniculate or the retina.